

Altered Mouse Adipose Tissue IGF-1 Expression Influences Glucose Control

Jan Trost

Prof. Gudrun A. Brockmann

Humboldt Universität zu Berlin Department of Crop and Animal Sciences Breeding Biology and Molecular Genetics

• *Igf-1* gene in mice is located on chromosome 10 (~ 87,8 – 87,9 Mb)

Class I transcripts

Expression of auto and paracrine acting IGF-1

Expression of endocrine acting IGF-1

Introduction

Cre-LoxP and Adipose Tissue specific KO of IGF-1

Requirements for adipose tissue specific IGF-1 KO:

- Cre : recombinase that cuts and merges DNA at specific sequences
- LoxP: sequence driven cutting targets of Cre
- aP2: Promotor specific for gene expression in Adipose Tissue (AT)

Introduction

Cre-LoxP and Adipose Tissue specific KO of IGF-1

Requirements for adipose tissue specific IGF-1 KO:

- Cre : recombinase that cuts and merges DNA at specific sequences
- LoxP: sequence driven cutting targets of Cre
- aP2: Promotor specific for gene expression in Adipose Tissue (AT)

Introduction

Cre-LoxP and Adipose Tissue specific KO of IGF-1

Requirements for adipose tissue specific IGF-1 KO:

- Cre : recombinase that cuts and merges DNA at specific sequences
- LoxP: sequence driven cutting targets of Cre
- aP2: Promotor specific for gene expression in Adipose Tissue (AT)

Results on B6N

Body weight B6N wt vs. aP2 driven adipose tissue specific IGF-1 KO (AT-IGF1-KO) on SMD and HFD

 \rightarrow In AT-IGF1-KO mice no significant reduction of BW, LM, FM compared to wt.

Results on B6N

aP2Cre generates only partial KO in adipose tissues

→ Autocrine Igf-1 in adipose tissue reduced in AT-IGF1-KO

Results on B6N

🗖 wt 📕 AT-IGF1-KO

AT-IGF1-KO in Berlin Fatmouse Imbed line

Body Weight and Growth

- Berlin Fat Mouse Inbred Line 860 (BFMI860)
- Higher body weight, body fat+ and lean mass compared to B6
 - general higher fat mass
 - lean mass marginally increased¹
 - in spite of high fatness
 - not deficient in blood glucose control^{2;3}
 - but high blood levels of insulin
 - and high blood levels of IGF-1

1: Wagener, Asja et al.; *Physiol Genomics 27: 264–270, 2006* 2: *Hantschel, Claudia et al.; Obesity Facts 4:270+277 2011* 3: Schäfer, Nadine et al.; Growth Factors 29(6):298+309, 2011 → Hypothesis: Higher effect of AT-IGF1-KO on BFMI due to higher fat mass

→ Trends similar to B6N, reduced organ weights in BFMI-KO, except for liver

Serum IGF-1, males, 20 weeks

→ No significant differences in *Igf-1* expression or IGF-1 serum levels between KO and wt on BFMI background.

Discussion/ Outlook

- Results AT-IGF1-KO
 - KO of IGF1 occurs partialy in AT
 - IGF1 produced in adipose tissue likely contributes to the regulation of glucose homeostasis
 - Effects in the first place on HFD and in fat mice compared to SMD
 - More animals and adipose tissue wide KO are needed to confirm the effects
 - A safe KO in the adipose tissue with another Cre mouse will be generated

Acknowledgemends

Body Weight and Growth

Thanks to

GRK1208 and DFG for funding

DFG Graduate School 1208

The mice being sacrificed for my researches

Graduate College 1208 Hormonal Regulation of Energy Metabolism,

Acknowledgemends

Body Weight and Growth

Thanks to the whole Group of Professor Brockmann

DFG Deutsche Forschungsgemeinschaft

DFG Graduate School 1208

Hormonal Regulation of Energy Metabolism, Body Weight and Growth

Thank you for your attention

DFG Graduate School 1208

